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ABSTRACT  
 

Acquired immunodeficiency syndrome (AIDS) is one of the most serious public health problems in 
the world, which greatly affects the socio-economic growth. Mathematical models can serve as 
tools for understanding the epidemiology of human immunodeficiency virus (HIV) and AIDS. In 
this paper, we consider a mathematical model having three compartments. Uninfected and in-
fected states are proposed and analysed. It is found that the uninfected state is locally stable when 
the reproduction number R0 < 1 and the infected state is locally stable when R0  ≥  1 and globally 
stable when R0 > 1. The model is analysed with and without delay. Numerical simulations are car-
ried out to illustrate the results. 
  
Key words: AIDS; HIV; CD4+ T cells; stability; delay.   

Corresponding author: Lalawmpuii 
Phone: +91-0389-2330874  
E-mail: rlalawmpuiimzu@gmail.com   

INTRODUCTION 
 

AIDS is medically devastating to its victims, 
and causes financial and emotional havoc on the 
infected person and his/her relatives. The pur-
pose of this paper is to model and understand 
the behaviour of the causative agent of AIDS 
that is HIV. HIV targets, among others, the 
CD4+ T lymphocytes, which are the most abun-
dant white blood cells of the immune system 
(referred to as helper T-cells or CD4+ T cells). 
Helper T-cells play a key role in the process of 
gaining immunity to specific pathogens; in fact, 
if one’s helper T-cells are destroyed, the entire 

specific immune response fails. HIV kills the 
very cells that are required by our bodies to de-
fend us from pathogens, including HIV itself.1 

Several models have been developed in an 
attempt to understand the dynamics of infec-
tious diseases.2-13 In particular, Murray et. al.14 

determined the viral level after the initial peak, 
by the rate of reactivation of memory cells. 
Perelson et. al.15 observed that the model exhibits 

many of the symptoms of AIDS seen clinically; 
the long latency period, low levels of free virus 
in the body, and the depletion of CD4+ T-cells. 
They defined the model by considering four 
compartments: uninfected cells, latently infected 
cells, actively infected cells and free virus. They 
described the dynamics of these populations by a 
system of four ordinary differential equations. 
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Mathematical analysis of the global dynam-
ics of a model of HIV infection has also been 
studied by many authors.16-18 Elaiw16 has con-
structed Lyapunov functions19 to establish the 
global stability of the uninfected and infected 
steady states. 

In this paper, we consider three compart-
ments: the uninfected CD4+ T-cells, the infected 
CD4+ T-cells and the free virus. The existence 
and stability of the uninfected and infected states 
are considered. Time-delay model is also pro-
posed and analysed, considering the delay be-
tween the infection of CD4+ T cell and emission 
of virus particles on a cellular level.20-23  

 

MATHEMATICAL MODEL 

Modelling the dynamics of CD4+ T cells with and without delay   

A basic model to study HIV dynamics can 
be described by the following equations: 
 

( )
( ) ( ) ( ) 

dT t
dT t kV t T t

dt
  

 

( )
( ) ( ) (t) 

dT t
kV t T t T

dt
  


     (2.1)

 
( )

( ) ( )
dV t

N T t cV t
dt

    

 
In the above model, T, I and V are the 

concentrations of uninfected CD4+ T cells at 
time t, concentrations of infected cells at time t 

and concentrations of free virus at time t 

respectively, λ is the recruitment rate of 
uninfected T cells, d is the per capita death rate 

of uninfected cells, k is the rate constant at 

which uninfected cells are infected by free virus, 
δ is the per capita death rate of infected cells, N 

is the total number of virus particles produced 
by productively infected cells during its lifetime 
(burst size), c is the clearance rate of virus, kVT 

gives the mass action and Nδ gives the per capita 

viral production. Here, τ is the time delay 

between infection of the CD+T cells to the cells 
becoming actively infected. 
 

Model without delay 
 
When τ = 0, the model (1)-(3) reduces to the 

following model 

When τ = 0, the model (1)-(3) reduces to the 

following model 

( )dT t
dT kVT

dt
  

 
( )dT t

kVT T
dt




   (3.1)
 

( )dV t
N T cV

dt
    

The above system has two non-negative 

steady states, 
1 , 0,0E

d

 
 
 

 and 
2E ( , , )T T V

.
 

2E  exists when 
cd

kN
  . That is, 

0 1R  , where 

0

kN
R

cd


 ,  the reproductive ratio, that is, the 

number of secondary infections in a healthy host 
caused by a single infected cell.  
 

Stability Analysis 
 

Theorem 1. The non-infected state 
1E  is locally 

asymptotically stable when 
0 1R   

Proof. The Jacobian matrix of the system at the  
non-infected state 

1E  is 

  

1

0

0

0

k
d

d

k
J

d

N c








 
  
 
  
 
 

 
  

 

All eigenvalues of 1J  have negative real 

parts. Hence 1E  is locally asymptotically stable. 

 

Theorem 2. The infected state 2E  is locally 

asymptotically stable when 
0 1R  . 

The detailed proof is shown in appendix A. 

 

Lemma 1. The bounded set  

  3( ), *( ), ( ) : 0 * ,S T t T t V t R T T V K
d




 
      
 

 

is positively invariant with respect to the system 
(3.1). 
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is positively invariant with respect to the system 
(3.1). 

The proof of the lemma is given in Appendix B. 
 

Theorem 3. The infected steady state 
2E   is 

globally asymptotically stable when 
0 1R  . In 

the bounded set 

  3( ), *( ), ( ) : 0 * ,S T t T t V t R T T V K
d




 
      
 

 

The proof is shown in Appendix C. 

 

Model with Delay 
 

Here we introduce a time delay into the 
basic model to describe the time between 
infection of the CD4+ T cells to the cells 
becoming actively infected. The model is 
 

( )
( ) ( ) ( ) 

dT t
dT t kV t T t

dt
    

( )
( ) ( ) (t) 

dT t
kV t T t T

dt
  


   

 
(5.1) 

( )
( ) ( )

dV t
N T t cV t

dt
    

 
Again we find the uninfected steady state 

3E ( ,0,0)T   and 
4E ( , , ) T T V . 

At 
3E ( ,0,0)T , from equation (4), we get 

T
d


 . Thus 

3 ,0,0E
d

 
 
 

 is the uninfected steady 

state. 

At 
4E ( , , )T T V , from equation (3),  

N T
V

c

 

  

Putting this value of V  in equation (2), we 

obtain c
T

kN
  

Again putting N T
V

c

 


 in equation (1), we 

get 
1 cd

T
kN




  
  

 
 

Thus 
4

1
E , ,

c cd N T

kN kN c






  
     

 , that 

is, 
4

1
E , ,

c cd k N dc

kN kN kc






   
  

  
 is the 

infected steady state. 
 

Theorem 4. Suppose 
(i) 0, 0    and 0    

(ii) d   

Then the infected steady state 
4E ( , , )T T V

of the delay model is asymptotically stable when 

0 1R   for all 0  . 

The proof is given in Appendix D. 

 

Numerical Simulations 
 

We choose the following parameters in the 
model: 

 
With the above values of parameters, the 

positive equilibrium 2E exists and it is given by 

*2.968, 0.147, 0.094T T V    

Also, with the above values of parameters, 

0 1.122 1R    

Hence the condition in theorem 2 is 
satisfied.  

Also, the three inequalities in Theorem 3 are 

satisfied with 
1 0.1C  , 

2 5C  , 5000K  . 

With the above parameters,  
1.5790 0, 0.0577 0, 0.9354 0           
Hence conditions (i) and (ii) of Theorem 4 

are also satisfied. 
 

a) Behaviour of uninfected cells for different values of k 
 
Behaviour of uninfected cells with respect to 

time for different values of the rate constant at 
which uninfected cells are infected by free virus. 

 1, 0.3, 0.4, 0.75, 0.95, 0.8d k c N      

 1, 0.3, 0.4, 0.75, 0.95, 0.8d k c N      
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Figure 1 

 
It is noted here that the density of uninfected 

cells increases as k decreases. It is also observed 
that T increases rapidly and gradually reaches a 
steady state. 

 

b) Behaviour of uninfected cells for different values of 

lambda 

 
Behaviour of uninfected cells with respect to 

time for different values of the recruitment rate 
of uninfected T cells. 

Figure 2 

It is noted here that the density of uninfected 
cells increases as lambda increases. It is also ob-
served that T increases rapidly and then reaches 
a steady state. 

 

c) Behaviour of infected cells for different values of 

lambda 

 
Behaviour of infected cells with respect to 

time for different values of the rate constant at 
which uninfected cells are infected by free virus. 

Figure 3 

 
It is noted here that the density of infected 

cells increases as k increases. It is also observed 
that T* decreases rapidly and then reaches a 
steady state. 

 

d) Behaviour of free virus for different values of N 
 
Behaviour of free virus with respect to time 

for different values of the total number of virus 
particles produced by productively infected cells 
during its lifetime (burst size). 

Modelling the dynamics of CD4+ T cells with and without delay   
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Figure 4 

 
It is noted here that the density of free virus 

increases as N increases. It is also observed that 

the population of free virus decreases rapidly 
and gradually reaches a steady state. 

 

e) Behaviour of uninfected cells, infected cells and virus 

with respect to time with τ = 1  

Figure 5 

 

f) Behaviour of uninfected cells, infected cells and virus 

with respect to time with τ ≈ 0 

Figure 6 

From Figure. 5 and Figure. 6, it is seen that 
in the presence of delay, the population of 
infected cells and the population of virus 
increases at a slower rate. 

 

Conclusions 
 

In this paper, we have studied the basic 
dynamic model of CD4+ T-cells. The model has 
three differential equations dealing with the 
interactions between the uninfected cells, 
infected cells and free virus. A decrease in 
density of uninfected cells has been observed 
upon interaction with virus. The density of 
infection increases with viral interaction. 
Existence of equilibrium points and the 
conditions for local and global stability have 
been obtained. The basic reproduction number 

0R  is obtained and it determines the dynamics of 

the HIV models. It is seen that the infection is 
cleared out when 

0 1R   whereas the infection 

persists when 
0 1R  . A time delay   i.e. the 

time delay between the infection of CD4+T cell 
and the emission of virus particles on a cellular 
level, has been incorporated. It is found that the 
solution of the delay system converges to the 
disease free equilibria if 

0 1R  . The infected 

steady state is asymptotically stable for all 0   

when 
0 1R  . 

 

Appendix A: Proof of Theorem 2 
 

The Jacobian matrix of the system at the 
infected state 

2E  is 

2

0

0

d kV kT

J kV kT

N c





   
 

  
 
    

The characteristic equation is  
3 2

2 1 0 0A A A        (1) 

  
By using the transformations 

1 1t T T   

*

2 2t T T   

1 1v V V 
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The Jacobian matrix of the system at the 
infected state 

2E  is 

2

0

0

d kV kT

J kV kT

N c





   
 

  
 
    

The characteristic equation is  
3 2

2 1 0 0A A A        (1) 

  
By using the transformations 

1 1t T T   

*

2 2t T T   

1 1v V V 
 

 
We linearize the system 

.

1
1

.

2 2 2

.
1

1

T
T

T J T

V
V

 
   
   

   
     
   
and get 

 
.

1 1 1

.

2 1 2 1

.
2 1

1

T d kV T kTV

T kVT T kTV

N T cV
V





        
        
   
    

 

 
Consider the following positive definite 

function 

2 2 2

1 1 2 2 1

1

2
X T C T C V    

 

Then  

 

i.e.

 

 

        2 2 2 2 2 2

1 1 1 2 1 2 1 1 1 2 1 1 2 2 1 2 1 2 1

1 1 1 1 1 1

2 2 2 2 2 2
X d kV T C kVTT C T d kV T kT TV cC V C T C N C kT T V cC V               

        2 2 2 2 2 2

1 1 1 2 1 2 1 1 1 2 1 1 2 2 1 2 1 2 1

1 1 1 1 1 1

2 2 2 2 2 2
X d kV T C kVTT C T d kV T kT TV cC V C T C N C kT T V cC V               

        2 2 2 2 2 2

1 1 1 2 1 2 1 1 1 2 1 1 2 2 1 2 1 2 1

1 1 1 1 1 1

2 2 2 2 2 2
X d kV T C kVTT C T d kV T kT TV cC V C T C N C kT T V cC V               

 
2 2 2 2 2 2

11 1 12 1 2 22 2 11 1 13 1 1 33 1 22 2 23 2 1 33 1

1 1 1 1 1 1

2 2 2 2 2 2
X A T A TT A T A T A TV A V A T A T V A V         

i.e.

 

 

where 

11

22 1

33 2

12 1

13

23 2 1

A d kV

A c

A cC

A C kV

A kT

A C N C kT





 







 

 

 

 

Sufficient conditions for X to be negative 

definite are that the following inequalities hold 
2

12 11 22

2

13 11 33

2

23 22 33

A A A

A A A

A A A






 

 The last inequality is satisfied if 
0 1R   .

  
 

Appendix B: Proof of Lemma 1 
 

Adding the first and the second equations of 
system (3.1), 

 
..
* * * 0T T dT T d T T           

(since d  ) 

So both the uninfected and infected T-cell 
populations are always bounded. 

Also from the third equation, 

𝑉 =
𝑁𝛿𝑇∗

𝑐
 

Therefore, 𝑉 ≤ 𝐾, for some 𝐾 ≥ 0. 
Thus we have a bounded set 

  3( ), *( ), ( ) : 0 * ,S T t T t V t R T T V K
d




 
      
 

 

that is positively invariant with respect to system 
(3.1). 

 

Appendix C: Proof of Theorem 3 
 

        2 2 2 2 2 2

1 1 1 2 1 2 1 1 1 2 1 1 2 2 1 2 1 2 1

1 1 1 1 1 1

2 2 2 2 2 2
X d kV T C kVTT C T d kV T kT TV cC V C T C N C kT T V cC V               

        2 2 2 2 2 2

1 1 1 2 1 2 1 1 1 2 1 1 2 2 1 2 1 2 1

1 1 1 1 1 1

2 2 2 2 2 2
X d kV T C kVTT C T d kV T kT TV cC V C T C N C kT T V cC V               

 
2 2 2 2 2 2

11 1 12 1 2 22 2 11 1 13 1 1 33 1 22 2 23 2 1 33 1

1 1 1 1 1 1

2 2 2 2 2 2
X A T A TT A T A T A TV A V A T A T V A V         

 
2 2 2 2 2 2

11 1 12 1 2 22 2 11 1 13 1 1 33 1 22 2 23 2 1 33 1

1 1 1 1 1 1

2 2 2 2 2 2
X A T A TT A T A T A TV A V A T A T V A V         
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Let  

 

Then 

 
  

 
 

 
i.e. 

      

      

      

22
* * * *

1 11 12 22

2 2

11 13 33

2 2
* * * *

22 23 33

1 1

2 2

1 1
      

2 2

1 1
      

2 2

V a T T a T T T T a T T

a T T a T T V V a V V

a T T a T T V V a V V

       

      

      



 

     
 (2) 
where 

 

11

1
22 * *

33 2

12 1 *

13

23 2 1 *

2

2

3

a
TT

C kVT
a

T T

a C c

kV
a C

T

a k

kT
a C N C

T













 

 

 

1V  will be negative definite if  

 
 

*
2

* * * 2
1 *
( , , ) ln ln

2

CT T
V T T V T T T C T T T V V

T T


   

          
    

 
 

*
2

* * * 2
1 *
( , , ) ln ln

2

CT T
V T T V T T T C T T T V V

T T


   

          
    

 

      

       

      

22
* * * *1

1 1 * * *

2 2

2

2 2
* * * *1

2 1 2* * *

21 1

2 2

1 1 2
      

2 2 3

21 1 2
      

2 2 3

C kVTkV
V T T C T T T T T T

TTT T T

T T k T T V V C c V V
TT

C kVT kT
T T C N C T T V V C c V V

T T T







       

       

 
        

 



 

      

       

      

22
* * * *1

1 1 * * *

2 2

2

2 2
* * * *1

2 1 2* * *

21 1

2 2

1 1 2
      

2 2 3

21 1 2
      

2 2 3

C kVTkV
V T T C T T T T T T

TTT T T

T T k T T V V C c V V
TT

C kVT kT
T T C N C T T V V C c V V

T T T







       

       

 
        

 



 

      

       

      
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The last inequality is satisfied if 
0 1R  . 

 

Appendix D: Proof of Theorem 4 
 

At the infected steady state 
4E ( , , )T T V , the 

linearized system is given by 

1 2

( )
( ) ( )

dY t
J Y t J Y t

dt
    (3) 

where 
*(.) (.), (.), (.)

T

Y T T V   
 

 
The characteristic equation of eqn. (3) is  

 3 2

2 1 0 1 0 0A A A B B e            (4)   

where  

2A c d kV     

  1A d kV c c      

 0A c d kV   

1B kN T   

0B kdN T   

When 0  , all the roots of eqn.(4) have 

negative real part and for 0  , it has infinitely 

many roots. By Rouche’s theorem and the 
continuity in  , eqn.(4) has roots with positive 

real parts if and only if it has purely imaginary 
roots.  

Taking ( ) ( ), 0i        , as the 

eigenvalue of eqn.(4), where ( )   and ( )   

depend on the delay  . Since the infected 

steady state 
4E ( , , )T T V  of the ODE model is 

stable, it follows that  ( ) 0    when 0  . By 

continuity, if 0   is sufficiently small, we still 

have ( ) 0    and 
4E ( , , )T T V  is still stable.  If 

0( ) 0    for certain value 
0 0   so that 

0( )i    is a root of eqn.(4), then the steady 

state 
4E ( , , )T T V  loses its stability and becomes 

unstable when ( )   becomes positive. If such an 

0( )  does not exist, that is, if the characteristic 

eqn.(4) does not have purely imaginary roots for 

all delay, then the steady state 
4E ( , , )T T V  is 

always stable.  
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Separating the real and imaginary parts, we 
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2

2 0 1 0A A B Sin B Cos         (5) 
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3

1 1 0A B Cos B Sin        (6) 

Squaring and adding eqn. (5) and eqn. (6), 
we obtain 

 

 
Putting 2 m   in the above equation, we 

get 
3 2 0m m m       (7) 

where 
2

1 22A A     

2 2

1 0 2 12A A A B     

2 2

0 0A B    

Eqn. (7) may be written as 
3 2( ) 0h m m m m        

Now,  2( )
3 2

dh m
m m

dm
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