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ABSTRACT  
 

A theoretical study of electronic and optical properties of zinc blende structure of BeS is presented 
by applying the full-potential linearized augmented plane wave (FP-LAPW) method within density-
functional theory (DFT) as implemented in WIEN2k code. Our results are in agreement with pre-
vious theoretical and experimental studies on this important semiconductor compound. For the 
optical calculations, the dipole approximation is used. The imaginary part of dielectric function is 
calculated in momentum representation, which requires matrix elements of the momentum p be-
tween occupied and unoccupied states. The microscopic origin of the main features in the optical 
spectra is identified and also the factors responsible for most of the optical absorption.  
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INTRODUCTION 
 
The II–VI semiconductors compounds have 

been extensively studied in recent years because 
of their scientific and technology interests. They 
are used in the fabrication of light-emitting de-
vices that are employed in optical processing, 
detection systems for environmental pollution 
and color-displaying modules. In particular, the 

beryllium chalcogenides BeS, BeSe and BeTe 
are the II–VI compounds that crystallize in the 
four-fold coordinated zinc blende (B3) structure 
at low pressure. In fact, probably as a result of 
their very high toxic nature only few experimen-
tal studies1 have been performed on these com-
pounds but more theoretical studies of these 
compounds are available in the literature.2-13 
Theoretical calculation of the optical and elec-
tronic properties of BeX (X = Te, Se and S) 
compounds were performed by Stukel2 using a 
first-principle self-consistent orthogonalized-
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plane wave (OPW). The calculated dielectric 
functions were not compared with the experi-
mental data because no data were available at 
that time. A few non-relativistic local density 
approximation (LDA) calculations of the struc-
tural, electronic and optical properties have been 
performed for beryllium monochalcogenides.3,4 
Fleszar and Hanke5 have calculated electronic 
excitations in BeX using the many-body Green’s 
functions technique (GW) and have given a de-
tailed discussion of LDA versus GW. Hassan 
and Akbarzadeh6 have present detail calculation 
of the band structure using more advanced 
Engel Vosko’s GGA (EV-GGA) formalism. 
Imad Khan et al.7 have calculated electronic and 

optical properties of mixed Be-chalcogenides 
with the FP-LAPW method using a recently 
developed modified Beck and Johnson potential. 
The structural and electronic properties have 
also been theoretically investigated using the 
tight-binding linear muffin-tin orbital method 
(TB-LMTO).12 

The aim of this paper is to give a compara-
tive and complementary study of electronic 
properties to both experimental and other theo-
retical works by using FP-LAPW method as 
well as optical studies for BeS. 

 

METHOD 
 

We calculated the optical properties of BeS 
using the FPLAPW method14 as implemented in 
the WIEN2K package.15 We choose the ex-
change-correlation potential parameterized by 
Perdew et al.16 which is derived by using the gen-

eralized gradient approximation (GGA). In the 
FPLAPW method, a basis set is obtained by 
dividing the unit cell into non-overlapping 
atomic spheres (centered on the atomic sites) 
and an interstitial region. Inside the atomic 
sphere, a linear combination of radial function 
times spherical harmonic is used, and in the in-
terstitial region a plane wave expansion is aug-
mented by an atomic like function in every 
atomic sphere. This method yields accurate en-
ergy eigenvalues and wavefunctions, therefore 
appropriate for calculating the electronic and 

optical properties of crystalline solids. We have 
chosen sphere radii of 1.8 Å for Be and 2.8 Å for 
S. For our calculation, we used lattice parame-
ters a = 4.8630 Å for BeS.17 The values of Kmax 

× RMT = 7.0 (where RMT is the atomic sphere 

radius and Kmax is the interstitial plane wave 

cut-off), In the atomic region, the basis set con-
sists of spherical harmonics with angular quan-
tum number l = 10 and a non spherical contribu-

tion with l = 4 are kept constant throughout the 

calculations The self-consistent iterations are 
considered to be converged when the total en-
ergy of the system are stable within 10-5 Ry. The 
semiconducting beryllium sulphide crystallized 
in the zinc blende structure. The space group is 
F-43 m. The Be atom is located at the origin and 
the S atom is located at (1/4, 1/4, 1/4). In a 
cubic unit cell only one component of the dielec-

tric function has to be calculated, i.e. εxx, written 

as 
 

ε(ω) = ε1(ω) + iε2(ω)    (1) 

 
describes the optical response of the system at all 

photon energies E = hω. The imaginary part of 

the dielectric function ε2(ω) is given by18 

(2) 
where M is the dipolematrix element, i and j are 

the initial and final states, respectively, fi is the 

Fermi distribution function for the i th state. Ei is 

the energy of electron in the i th states. The real 

part of the dielectric function ε1(ω) can be ex-

tracted from the imaginary part of the dielectric 

function ε2(ω) by using the Kramers–Kronig 

relation19 

 

(3) 
 

 
where P implies the principal value of the inte-

gral. 
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Figure 1. Total density of states for ZB BeS.  Figure 2. Partial density of states for ZB BeS. 

Figure 3. Band structure for BeS. 

Figure 4. Real and imaginary part of dielectric function 

for BeS. 
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RESULTS AND DISCUSSIONS 

 
Electronic properties 

 

For zinc blende structured of BeS, the calcu-
lated total density of states, the partial density of 
states and band structures are illustrated in Fig-
ures 1, 2 and 3. The valence band maximum 

(VBM) occurs at the Γ point and con­duction 

band minimum (CBM) at the X point resulting 
in an indirect gap in agreement with experiment 
and previous theoretical work.1-13 The lowest-
lying band shown in the graph arises mainly 
from the chalcogen valence s states and the up-

per valence bands arises from the chalcogen va-

lence p states with the top occurring at the Γ 

point. The conduction band arises mainly from 
the 2s-Be states with the minimum energy occur-

ring at X-points.  
The band gap of semiconductor BeS in the 

tetragonal phase as calculated by using the FP-
LAPW method and using GGA approximation 
was found to be 3.12 eV. The important features 
of the band structure are given in Table 1. It is 
clearly seen that the band gap obtained by GGA 
are lower than the corresponding experimental 
values and results obtained from OPW and EV-
GGA and not far from the results obtained by 
the TB-LMTO methods with the same exchange 
correlation approximation. This underestima-
tion of the band gap is mainly due to the fact 
that the simple forms of GGA are not suffi-
ciently flexible to accurately reproduce both ex-
change correlation energy and its charge deriva-
tive. 

 

Optical properties 

 

The determination of the optical properties of 
a compound in the spectral range above its band 
gap plays an important role in the understanding 
of the nature of that material and also gives a 
clear picture of its applications in optoelectronic 

devices. The detailed variation of real, ε1 (ω) and 

imaginary ε2 (ω) parts of the dielectric function 

for BeS with photon energy are shown in Figure 

4. The ε1 (ω) spectra appears at the same energy 

as a peak in the corresponding ε2 (ω) spectra. 
Metallic reflectance characteristics are exhibited 

in the range of ε1 (ω) < 0. The peak of the imagi-

nary part of the dielectric function is related to 
the electron excitation. It is clear from the figure 

that ε2 (ω) shows single peak at 6.95 eV for BeS. 

The peaks are primarily due to transitions be-
tween valence bands and conduction bands 
above the Fermi energy along the symmetry 

lines Г-X direction. We compare our calculated 

ε2 (ω) with the previous theoretical calcula-

tions4,9,13 and agreement is found.  
 

CONCLUSIONS 
 

We present the electronic and optical proper-
ties of Zinc blende structure of BeS using gener-
alized gradient approximation (GGA) within 
the FP-LAPW method. We found that the ZB 
structured BeS has indirect gap which is induced 

by the (Γ - X) transition with its value being 3.12 

eV. We compare our calculated ε2 (ω) with the 

previous theoretical calculations4,9,13 and agree-
ment is found. The band calculations are com-

System 

study 

Expt. 

Band 

gap 

Theoretical Band gap Present 

work 

GGA 
OPW TB-LMTO EV GGA 

BeS >5.5
a
 4.17

 b
 3.78

c
 4.23

d
, 4.26

f
, 4.241

g
, 

4.247
h
 

3.12
d
, 4.20

e
, 3.14

f
, 3.141

g
, 

3.148
 h

, 2.911
i 

3.12 

 

Table 1. Our calculated energy band gap values and the experimental and theoretical band gap (all values are in 

eV). 

aRef. 1, bRef. 2, cRef. 12, dRef. 6, eRef. 7, fRef. 8, gRef. 9, hRef. 10, iRef. 11. 
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parable very well to available measurements. In 
addition, we revealed behaviours of TDOS and 
PDOS of the ZB BeS. The obtained optical pa-
rameters suggest that the strong absorption spec-
trum appears mostly in the ultra-violet region, 
and the optical absorption decreases with pho-
ton energy in the high energy range. 
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