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ABSTRACT  
 

The present article deals with the study of phase velocities of elastic waves in the medium of 
swelling porous. The medium consist of mixtures of solid, fluid and gas. Based on Eringen's linear 
theory of swelling porous, it is found that the existence of three longitudinal waves and two trans-
verse waves, propagating with distinct velocities which are attenuated. Discussions of the particu-
lar cases are presented. Numerical and analytical calculations of phase velocities and attenuation 
are depicted graphically. 
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INTRODUCTION 
 
The propagations of waves in swelling po-

rous medium is a subject of continued interest 
due to its wide and far application in various 
field of technology, engineering, oil exploration, 
geophysics, architecture etc. Biological materi-
als, minerals and synthetic porous materials of-
ten exhibit the swelling or shrinking when in 
contact with changing salt concentrations. There 
is multiplicity of theories which described the 
mechanical properties of porous materials. Biots 
introduced one of the earliest theories called 
Biot's consolidation theory of fluid saturated 
porous solid.1 A continuum theory of mixtures 
are studied extensively by Bowen, he considered 

a particular volume fraction as constitutive vari-
ables.2 Grag and Nayfeh studied the porous me-
dia filled with elastic matrix, water and gas 
within the context of mixture theory.3 Tuncay 
and Corapioglu presented a theory of porous 
media containing two immiscible Newtonian 
fluids using volume averaging technique.4 Gales 
investigated some theoretical problems concern-
ing waves and vibrations in the context of iso-
thermal linear theory of swelling porous elastic 
solid with fluid or gas, he proposed only two 
field equations.5 Kumar et al. studied the waves 

propagation in swelling porous medium of an 
infinite extent, with the medium consist of solid 
and fluid. They also studied the reflection phe-
nomenon using appropriate boundary condi-
tions.6 Tersa and Bennethum derived a transport 
equation for swelling porous materials that un-
dergo finite deformations.7 Gales investigated 
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the spatial behaviour of solutions describing har-
monic vibrations of right cylinder in an isother-
mal linear theory of swelling porous elastic 
soils.8 Bofill and Quintanilla studied the prob-
lem of anti plane shear deformation of swelling 
porous elastic soils in case of fluid or gas satura-
tion.9 In this article, we shall follow Eringen's 
theory,  he developed theory of mixtures for the 
field of swelling, and proposed continuum the-
ory of swelling porous elastic materials consist-
ing of solid, liquid and gas.10 Eringen's theory is 
different from Tuncay and Corapioglu. He as-
sumed that the transverse wave of porous me-
dium provided not only solid matrix but also the 
viscous nature of fluid. 

 

BASIC EQUATIONS 
 
Let us consider the region B in a physical 

three-dimensional space, occupied by swelling 
porous elastic material. Let us assume that this 
material consist of a mixture of solid, fluid 
(viscous) and gas (non-viscous). The Field equa-
tions for isothermal, linear and homogeneous 
isotropic swelling porous material is given by 
(see Eringen10 ): 

 

𝑡𝑖,𝑗
𝑠 + ρsfi

s + pi
f + pi

g
= ρs𝑢 𝑖

𝑠

 𝑡𝑖,𝑗
𝑓

+ ρffi
f − pi

f = ρf𝑢 𝑖
𝑓

𝑡𝑖,𝑗
𝑔

+ ρgfi
g

− pi
g

= ρg𝑢 𝑖
𝑔

      

 (1) 

where, 

 𝑡𝑖,𝑗
𝑘 − 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑠𝑡𝑟𝑒𝑠𝑠 𝑇𝑒𝑛𝑠𝑜𝑟; 𝑢𝑘

−  𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 

𝑓𝑖
𝑠 − 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑏𝑜𝑑𝑦 𝑓𝑜𝑟𝑐𝑒; 𝑝𝑖

𝑓

− 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑏𝑜𝑑𝑦 𝑓𝑜𝑟𝑐𝑒 

ρk −  𝑀𝑎𝑠𝑠 𝑑𝑒𝑛𝑠𝑖𝑡𝑦;     𝑘 = 𝑠 , 𝑓, 𝑔 

The superpose dot denote partial derivative 
with respect to time and the subscript preceded 
by coma denote partial derivative with respect to 
their corresponding coordinate axes. And the 
Constitutive equations for the given medium are 
given by Eringen10 as follows:  

 

 𝑡 𝑖𝑗
𝑠 =  2𝜇𝑒𝑖𝑗

𝑠  +  𝜆𝑒𝑟𝑟
𝑠 − 𝐴𝑓  𝑒𝑟𝑟  

𝑓
− 𝐴𝑔𝑒𝑟𝑟

𝑔
 𝛿𝑖𝑗

 𝑡𝑖𝑗  
𝑓

=  2𝛼𝑒 𝑖𝑗  
𝑓

+  
𝛽 𝑒 𝑟𝑟

𝑓
 – 𝐴𝑓  𝑒𝑟𝑟

𝑠  – 𝐴𝑓𝑓 𝑒𝑟𝑟  
𝑓

− 𝐴𝑓𝑔𝑒𝑟𝑟
𝑔  𝛿𝑖𝑗

   𝑡𝑖𝑗
𝑔 

=  − 𝐴𝑔𝑒𝑟𝑟  
𝑠 + 𝐴𝑔𝑓  𝑒𝑟𝑟

𝑓
 + 𝐴𝑔𝑔𝑒𝑟𝑟

𝑔
 𝛿𝑖𝑗

𝑝𝑖
𝑓

=  𝐵𝑓𝑓  𝑢 𝑖
𝑓

−  𝑢𝑖
𝑠 +  𝐵𝑓𝑔 𝑢 𝑖

𝑔
  − 𝑢𝑖

𝑠 

𝑝𝑖
𝑔

=  𝐵𝑓𝑔 (𝑢 𝑖
𝑔

−  𝑢𝑖
𝑠)  +  𝐵𝑔𝑔 (𝑢 𝑖

𝑔
  − 𝑢𝑖

𝑠)  
 
 
 

 
 
 

            

(2) 

                                    

Where,  𝜆,  𝜇  are Lame's parameters or elastic 

constants;  𝐴𝑓 , 𝐵𝑓  , 𝐵𝑓𝑓  ,  𝐵𝑓𝑔 ,  𝐵𝑔𝑔 , 𝐴𝑓𝑓 , 𝐴𝑓𝑔 ,
𝐴𝑔𝑔  , 𝛼 , 𝛽  are constitutive constants with the 

properties of 𝐴𝑓𝑔  =  𝐴𝑔𝑓  ; 𝐵𝑓𝑔 =  𝐵𝑔𝑓  , and 𝛿𝑖𝑗  

is a Kronecker delta and 𝑒𝑖𝑗
𝑘   is strain tensor such 

that 

𝑒𝑖𝑗
𝑘  =

1

2
(𝑢𝑖,𝑗

𝑘  + 𝑢𝑗 ,𝑖
𝑘 )                                            (3)      

Putting equations (2)  and (3)  in equation 

(1)  we get the following equations in vector 
form: 

 

 𝜆 + 𝜇 𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝑢𝑠  + 𝜇 𝑑𝑖𝑣 𝑔𝑟𝑎𝑑 𝑢𝑠

−  𝐵𝑓𝑓 + 𝐵𝑓𝑔 𝑢 𝑠

+  𝐵𝑓𝑓  +  𝐵𝑓𝑔 𝑢 𝑓 − 𝐴𝑓  𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝑢𝑓 − 

 𝐵𝑓𝑔  + 𝐵𝑓𝑓   𝑢 𝑠

                  − 𝐴𝑔 𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝑢𝑔 +  𝐵𝑔𝑔  +  𝐵𝑓𝑔 𝑢 𝑔

=  𝜌𝑠𝑢 𝑠

−𝐴𝑓  𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝑢𝑠 + 𝐵𝑓𝑔𝑢 𝑠 + 𝐵𝑓𝑓𝑢 𝑠

−𝐴𝑓𝑓  𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝑢𝑓  

– 𝐵𝑓𝑓𝑢 𝑓 +  𝛼 +  𝛽 𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝑢 𝑓

+ 𝛽 𝑑𝑖𝑣 𝑔𝑟𝑎𝑑 𝑢 𝑓

− 𝐴𝑓𝑔  𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝑢𝑔 − 𝐵𝑓𝑔𝑢 𝑔  

=  𝜌𝑓𝑢 𝑓

−𝐴𝑔  𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝑢𝑠 + 𝐵𝑔𝑔𝑢 𝑠 + 𝐵𝑔𝑓 𝑢 𝑠

−𝐴𝑓𝑔  𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝑢𝑓

  − 𝐵𝑓𝑔𝑢 𝑓  –𝐴𝑔𝑔  𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝑢𝑔 − 𝐵𝑔𝑔𝑢 𝑔  =  𝜌𝑔𝑢 𝑔 
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−𝐴𝑓  𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝑢𝑠 + 𝐵𝑓𝑔𝑢 𝑠 + 𝐵𝑓𝑓𝑢 𝑠

−𝐴𝑓𝑓  𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝑢𝑓  

– 𝐵𝑓𝑓𝑢 𝑓 +  𝛼 +  𝛽 𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝑢 𝑓
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− 𝐴𝑓𝑔  𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝑢𝑔 − 𝐵𝑓𝑔𝑢 𝑔  

=  𝜌𝑓𝑢 𝑓

−𝐴𝑔  𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝑢𝑠 + 𝐵𝑔𝑔𝑢 𝑠 + 𝐵𝑔𝑓 𝑢 𝑠

−𝐴𝑓𝑔  𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝑢𝑓

  − 𝐵𝑓𝑔𝑢 𝑓  –𝐴𝑔𝑔  𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝑢𝑔 − 𝐵𝑔𝑔𝑢 𝑔  =  𝜌𝑔𝑢 𝑔 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

                                                       
 (4) 

Where, the parameters 𝐴𝑝 , 𝐴𝑝𝑞   are 

dimensionally equal. Similarly 𝐵𝑝  and 𝐵𝑝𝑞  are 

also dimensionally equal. 𝛼  and  𝛽  are fluid 

viscous parameters, both has same dimensions.  

 

WAVE PROPAGATION 
 

In this section we shall investigate 
longitudinal and transverse wave by introducing 

scalar and vector potential ( 𝑤 and  𝑣 ) 
corresponding to longitudinal and transverse 
wave respectively. We shall use Helmholtz 
decomposition theorem as 

𝑢𝑘  =  ∇𝑤𝑘 + ∇ × 𝑣𝑘            (5)         
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 WAVE PROPAGATION 
 

In this section we shall investigate 
longitudinal and transverse wave by introducing 

scalar and vector potential ( 𝑤 and  𝑣 ) 
corresponding to longitudinal and transverse 
wave respectively. We shall use Helmholtz 
decomposition theorem as 

𝑢𝑘  =  ∇𝑤𝑘 + ∇ × 𝑣𝑘            (5)          

Where, ∇  is Laplacian, ×  is cross product 

and  𝑘 =  𝑠, 𝑓, 𝑔, and  ∇. 𝑣𝑘  =  0. 

Putting equation (5) into equation(4) , we 
shall have 

 

 
 𝜆 +  2𝜇 ∇2 

–  𝐵𝑓𝑓 + 𝐵𝑔𝑔 +  2𝐵𝑓𝑔 
𝜕

𝜕𝑡
− 𝜌𝑠 𝜕2

𝜕𝑡2

 𝑤𝑠 +

              −𝐴𝑓∇2 +  𝐵𝑓𝑔  + 𝐵𝑓𝑓   
𝜕

𝜕𝑡
 𝑤𝑓

+  −𝐴𝑔∇2  +  𝐵𝑔𝑔 + 𝐵𝑓𝑔 
𝜕

𝜕𝑡
 𝑤𝑔 = 0

 −𝐴𝑓∇2  +  𝐵𝑓𝑔 + 𝐵𝑓𝑓  
𝜕

𝜕𝑡
 𝑤𝑠 +

  𝛼 +  2𝛽 
𝜕

𝜕𝑡
∇2 – 𝐴𝑓𝑓∇2 − 𝐵𝑓𝑓 ∇2 − 𝜌𝑓 𝜕2

𝜕𝑡2 𝑤𝑓

+  −𝐴𝑓𝑔∇2 − 𝐵𝑓𝑔 𝜕

𝜕𝑡
 𝑤𝑔 = 0

 −𝐴𝑔∇2  +  𝐵𝑓𝑔 + 𝐵𝑔𝑔 
𝜕

𝜕𝑡
 𝑢𝑠

+  −𝐴𝑓𝑔∇2 − 𝐵𝑓𝑔 𝜕

𝜕𝑡
 𝑢𝑓 +

                                                                           

   −𝐴𝑔𝑔∇2 − 𝐵𝑔𝑔 𝜕

𝜕𝑡
− 𝜌𝑔 𝜕2

𝜕𝑡2 𝑤𝑔 = 0  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

             (6)            
and, 
 

 

 𝜇∇2 −  𝐵𝑓𝑓 + 𝐵𝑔𝑔 + 2𝐵𝑓𝑔 
𝜕

𝜕𝑡
− 𝜌𝑠 𝑣𝑠

+   𝐵𝑓𝑓 + 𝐵𝑔𝑔 
𝜕

𝜕𝑡
 𝑣𝑓

+   𝐵𝑓𝑔 + 𝐵𝑔𝑔 
𝜕

𝜕𝑡
 𝑣𝑔 = 0

  𝐵𝑓𝑓 + 𝐵𝑔𝑔 
𝜕

𝜕𝑡
 𝑣𝑠 +  𝛽

𝜕

𝜕𝑡
∇2 − 𝐵𝑓𝑓 𝜕

𝜕𝑡
− 𝜌𝑓 𝑣𝑓

+  −𝐵𝑓𝑔 𝜕

𝜕𝑡
 𝑣𝑔 = 0

                 𝐵𝑓𝑔 + 𝐵𝑔𝑔 
𝜕

𝜕𝑡
 𝑣𝑠 +  −𝐵𝑓𝑔 𝜕

𝜕𝑡
 𝑣𝑓

+  −𝐵𝑔𝑔 𝜕

𝜕𝑡
− 𝜌𝑔 𝑣𝑔 = 0  

 
 
 
 
 

 
 
 
 
 

           

             
(7)           

corresponding to Longitudinal wave and 
transverse wave respectively. 

For the propagation of time harmonic waves 
we shall use the following relations 

 𝑤𝑘  ,  𝑣𝑘 =  𝑤0
𝑘  , 𝑣0

𝑘 𝑒𝑖𝑘(𝑛.𝑟−𝑐𝑡)               (8) 

Where,  𝑖 =  −1, 𝑘  denote wave number, 𝑛  is 

unit normal vector, 𝑟 is radius vector, 𝑐 is phase 

velocity and 𝑡 is time. 
 
Longitudinal wave 

corresponding to Longitudinal wave and 
transverse wave respectively. 

For the propagation of time harmonic waves 
we shall use the following relations 

 𝑤𝑘  ,  𝑣𝑘 =  𝑤0
𝑘  , 𝑣0

𝑘 𝑒𝑖𝑘(𝑛.𝑟−𝑐𝑡)               (8) 

Where,  𝑖 =  −1, 𝑘  denote wave number, 𝑛  is 

unit normal vector, 𝑟 is radius vector, 𝑐 is phase 

velocity and 𝑡 is time. 
 
Longitudinal wave 
 

Putting equation (8) into equation (6) we get 

  

 𝐴1𝑥2  + 𝐴2 𝑤0
𝑠  +  𝐵1𝑥2 + 𝐵2 𝑤0

𝑓
 

+ 𝐶1𝑥2 + 𝐶2 𝑤0
𝑔

= 0

 𝐷1𝑥2  + 𝐷2 𝑤0
𝑠  +  𝐸1𝑥2 + 𝐸2 𝑤0

𝑓
 

+ 𝐹1𝑥2 + 𝐹2 𝑤0
𝑔

= 0

 𝐺1𝑥2  + 𝐺2 𝑤0
𝑠  +  𝐻1𝑥2 + 𝐻2 𝑤0

𝑓
 

+(𝐼1𝑥2 + 𝐼2)𝑤0
𝑔

= 0  
 
 
 

 
 
 

     

           (9) 

where, 

 𝐴1 =
𝜆 + 2𝜇

𝜌𝑠
     ; 

 𝐴2 =
− 𝐵𝑓𝑓  +𝐵𝑔𝑔 +2𝐵𝑓𝑔  𝑖

𝜔𝜌𝑠 − 1 

 𝐵1 =
−𝐴𝑓

𝜌𝑠         ; 

 𝐵2 =
 𝐵𝑓𝑔  +𝐵𝑓𝑓  𝑖

𝜔𝜌𝑠
 

 𝐶1 =
−𝐴𝑔

𝜌𝑠        ;

 𝐶2 =
 𝐵𝑓𝑔  +𝐵𝑔𝑔  𝑖

𝜔𝜌𝑠  

 𝐷1 =
−𝐴𝑓

𝜌𝑓        ; 

 𝐷2 =
− 𝐵𝑓𝑔  +𝐵𝑓𝑓  𝑖

𝜔𝜌𝑓  

 𝐸1 =  
𝜆 + 2𝜇

𝜌𝑓  𝑖𝜔 +
𝐴𝑓𝑓

𝜌𝑓 ; 𝐸2 =
𝐵𝑓𝑓 𝑖

𝜔𝜌𝑓 + 1 

 𝐹1 =
𝐴𝑓𝑔

𝜌𝑓    ;

 𝐹2 =
𝐵𝑓𝑔 𝑖

𝜔𝜌𝑠  

 𝐺1 =
−𝐴𝑔

𝜌𝑔    ;

 𝐺2 =
− 𝐵𝑓𝑔  +𝐵𝑔𝑔  𝑖

𝜔𝜌𝑔  

 𝐻1 =
𝐴𝑓𝑔

𝜌𝑔    ;

 𝐻2 =
𝐵𝑓𝑔 𝑖

𝜔𝜌𝑔  

   𝐼1 =
𝐴𝑔𝑔

𝜌𝑔    ;  

𝐼2 =
𝐵𝑔𝑔 𝑖

𝜔𝜌𝑔 + 1 

and,     𝑥2 = 𝑐−2. 
We can write the equation into the 

following matrix form: 
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𝐻2 =

𝐵𝑓𝑔 𝑖

𝜔𝜌𝑔
 

   𝐼1 =
𝐴𝑔𝑔

𝜌𝑔    ;  

𝐼2 =
𝐵𝑔𝑔 𝑖

𝜔𝜌𝑔
+ 1 

and,     𝑥2 = 𝑐−2. 

We can write the equation into the 
following matrix form: 
 

 

𝐴1𝑥2  + 𝐴2 𝐵1𝑥2 + 𝐵2 𝐶1𝑥2 + 𝐶2

𝐷1𝑥2  + 𝐷2 𝐸1𝑥2 + 𝐸2 𝐹1𝑥2 + 𝐹2

𝐺1𝑥2  + 𝐺2 𝐻1𝑥2 + 𝐻2 𝐼1𝑥2 + 𝐼2

   
𝑢𝑠

𝑢𝑓

𝑢𝑔
  

=  
0
0
0
           

(10)    

For non-trivial solution of equation (10) , 

we must have  

𝑑𝑒𝑡  

𝐴1𝑥2  + 𝐴2 𝐵1𝑥2 + 𝐵2 𝐶1𝑥2 + 𝐶2

𝐷1𝑥2  + 𝐷2 𝐸1𝑥2 + 𝐸2 𝐹1𝑥2 + 𝐹2

𝐺1𝑥2  + 𝐺2 𝐻1𝑥2 + 𝐻2 𝐼1𝑥2 + 𝐼2

 

= 0 
solving we get  

     𝐴𝑥6 +
𝐵𝑥4 + 𝐶𝑥2 + 𝐷 = 0             

(11) 

putting back  𝑥2 = 𝑐−2, we get 

     𝐷𝑐6 +
𝐶𝑐4 + 𝐵𝑐2 + 𝐴 = 0              

(12) 

where,          𝐴 = 𝐴1𝐸1𝐼1 − 𝐴1𝐹1𝐻1 − 𝐵1𝐷1𝐼1 +
𝐵1𝐹1𝐺1 + 𝐶1𝐷1𝐻1 − 𝐶1𝐷1𝐻1 − 𝐶1𝐸1𝐺1 

         𝐵 = 𝐴1𝐸1𝐼2 + 𝐴1𝐼1𝐸2 − 𝐴1𝐹1𝐻2 −
𝐴1𝐻1𝐹2 +  𝐸1𝐼1𝐴2 − 𝐹1𝐻1𝐴2 − 𝐵1𝐷1𝐼2 

−𝐵1𝐼1𝐷2  + 𝐵1𝐹1𝐺2  + 𝐵1𝐺1𝐹2 − 𝐷1𝐼1𝐵2 

+ 𝐹1𝐺1𝐵2  + 𝐶1𝐷1𝐻2 

+𝐶1𝐻1𝐷2 − 𝐶1𝐸1𝐺2 − 𝐶1𝐺1𝐸2 + 𝐷1𝐻1𝐶2

− 𝐸1𝐺1𝐶2 

        𝐶 =  𝐴1𝐸2𝐼2 − 𝐴1𝐹2𝐻2 + 𝐸1𝐴2𝐼2 +
𝐼1𝐴2𝐸2 − 𝐹1𝐴2𝐻2 − 𝐻1𝐴2𝐹2 − 𝐵1𝐷2𝐼2 
    +𝐵1𝐹2𝐺2 − 𝐷1𝐵2𝐼2 − 𝐼1𝐵2𝐷2 +
𝐹1𝐵2𝐺2 + 𝐺1𝐵2𝐹2 + 𝐶1𝐷2𝐻2 
       −𝐶1𝐸2𝐺2 + 𝐷1𝐶2𝐻2 +
𝐻1𝐶2𝐷2 − 𝐸1𝐶2𝐺2 − 𝐺1𝐶2𝐸2 

𝐷 = 𝐴2𝐸2𝐼2 − 𝐴2𝐹2𝐻2 − 𝐵2𝐷2𝐼2 + 𝐵2𝐹2𝐺2

+ 𝐶2𝐷2𝐻2 − 𝐶2𝐷2𝐻2 − 𝐶2𝐸2𝐺2 

Equation (12) is cubic in 𝑐2 and the solution 

gives three roots of 𝑐2. Corresponding to these 
roots, there exist three longitudinal waves.  
 

Equation (12) is cubic in 𝑐2 and the solution 

gives three roots of 𝑐2. Corresponding to these 

roots, there exist three longitudinal waves.  
 
Transverse waves 
 

Similarly, putting equation (8) into (7) we 
get 
  

  

 𝑎1𝑥2  +  𝑎2 𝑣0
𝑠  + 𝑎3𝑣0

𝑓
 + 𝑎4𝑣0

𝑔
= 0

  𝑏1𝑣0
𝑠  +  𝑏2𝑥2 + 𝑏3 𝑣0

𝑓
 + 𝑏4𝑣0

𝑔
= 0

                       𝑑1𝑣0
𝑠  + 𝑑2𝑣0

𝑓
 + 𝑑3𝑣0

𝑔
= 0

  

           (13)  

where, 

𝑎1 =
𝜇

𝜌𝑠    ;  𝑎2 =

− 𝐵𝑓𝑓  +𝐵𝑔𝑔 +2𝐵𝑓𝑔  𝑖

𝜔𝜌𝑠 − 1 

𝑎3 =
 𝐵𝑓𝑔  +𝐵𝑓𝑓  𝑖

𝜔𝜌𝑠       ;  𝑎4 =
 𝐵𝑓𝑔  +𝐵𝑔𝑔  𝑖

𝜔𝜌𝑠  

𝑏1 =
− 𝐵𝑓𝑔  +𝐵𝑓𝑓  𝑖

𝜔𝜌𝑓      ; 𝑏2 =
𝛽𝑖𝜔

𝜌𝑓  

𝑏3 =
𝐵𝑓𝑔 𝑖

𝜔𝜌𝑓 + 1     ;  𝑏4 =
𝐵𝑓𝑔 𝑖

𝜔𝜌𝑓  

𝑑1 =
− 𝐵𝑓𝑔  +𝐵𝑔𝑔  𝑖

𝜔𝜌𝑔  ; 𝑑2 =
𝐵𝑓𝑔 𝑖

𝜔𝜌𝑔  

𝑑3 =
𝐵𝑔𝑔 𝑖

𝜔𝜌𝑔 + 1   

We can write the equation (13) in a matrix 
form as follows: 

 

𝑎1𝑥2  + 𝑎2 𝑎3 𝑎4

𝑏1 𝑏2𝑥2 + 𝑏3 𝑏4

𝑑1 𝑑2 𝑑3

   
𝑣𝑠

𝑣𝑓

𝑣𝑔
 =  

0
0
0
  

For the non trivial solution 

𝑑𝑒𝑡  

𝑎1𝑥2  +  𝑎2 𝑎3 𝑎4

𝑏1 𝑏2𝑥2 + 𝑏3 𝑏4

𝑑1 𝑑2 𝑑3

 = 0 

Similarly, employing 𝑥2 = 𝑐−2  and solving the 

determinant we get, 

𝑑𝑐4 + 𝑏𝑐2 + 𝑎 = 0    

         (14) 

where,   𝑎 = 𝑎1𝑏2𝑑3 ;  𝑏 = 𝑎1𝑏3𝑑3 − 𝑎1𝑏4𝑑2 +
𝑎2𝑏2𝑑3 − 𝑎4𝑏2𝑑1 ; 
𝑐 = 𝑎4𝑏1𝑑2 − 𝑎3𝑏1𝑑3 + 𝑎2𝑏3𝑑3 − 𝑎2𝑏4𝑑2

+ 𝑎3𝑏4𝑑1 − 𝑎4𝑏3𝑑1. 
Equation (14)  is quadratic in 𝑐2  and the 

solution of equation (14) gives two roots of 𝑐2. 

Corresponding to these roots, there exist two 
transverse waves. Therefore we conclude that 
there are two transverse waves. 

Phase velocities of elastic waves in swelling porous materials   
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Equation (14)  is quadratic in 𝑐2  and the 

solution of equation (14) gives two roots of 𝑐2. 

Corresponding to these roots, there exist two 
transverse waves. Therefore we conclude that 
there are two transverse waves. 
 

PHASE VELOCITIES AND ATTENUATIONS 
 
Phase velocities 

 
In this section we shall find the explicit values of 
phase velocities (for longitudinal and transverse 

wave). Solving equation (12) and (15) we can 
find the values of velocities of longitudinal and 
transverse waves respectively. 

Now solving equation (12)  in   𝑐2 , we shall 

suppose that the solutions are  𝑐1
2 , 𝑐2

2  and   𝑐3
2 , 

given as: 

 

𝑐1
2 =   𝐻2 + 𝐼3 

1
2 − 𝐻 

1
3

− 𝐼   𝐻2 + 𝐼3 
1
2 − 𝐻 

−
1
3

−
𝐶

3𝐷

𝑐2
2 = 𝐼  2   𝐻2 + 𝐼3 

1
2 − 𝐻 

1
3
 

−1

−
𝐶

3𝐷
−

1

2
  𝐻2 + 𝐼3 

1
2 − 𝐻 

1
3

+
 3

2
 𝐼   𝐻2 + 𝐼3 

1
2 − 𝐻 

−
1
3
 

+
𝑖

2
  𝐻2 + 𝐼3 

1
2 − 𝐻 

1
3

𝑐3
2 = 𝐼  2   𝐻2 + 𝐼3 

1
2 − 𝐻 

1
3
 

−1

−
𝐶

3𝐷
−

1

2
  𝐻2 + 𝐼3 

1
2 − 𝐻 

1
3

−
 3

2
 𝐼   𝐻2 + 𝐼3 

1
2 − 𝐻 

1
3
 

+
𝑖

2
𝐼   𝐻2 + 𝐼3 

1
2 − 𝐻 

−
1
3

  

(15) 

where, 𝐻 =
𝐴

2𝐷
+

𝐶3

27𝐷3 −
𝐵𝐶

6𝐷2  and  𝐼 =
𝐵

3𝐷
−

𝐶2

9𝐷2 

And solving (14) we also have 

 
𝑐4

2 =
−𝑏+ 𝑏2−4𝑎𝑑

2𝑑

𝑐5
2 =

−𝑏− 𝑏2−4𝑎𝑑

2𝑑

            (16) 

The equation (15)  and (16)  gives the 
explicit values of longitudinal and transverse 

where, 𝐻 =
𝐴

2𝐷
+

𝐶3

27𝐷3
−

𝐵𝐶

6𝐷2
  and  𝐼 =

𝐵

3𝐷
−

𝐶2

9𝐷2
 

And solving (14) we also have 

 
𝑐4

2 =
−𝑏+ 𝑏2−4𝑎𝑑

2𝑑

𝑐5
2 =

−𝑏− 𝑏2−4𝑎𝑑

2𝑑

            (16) 

The equation (15)  and (16)  gives the 
explicit values of longitudinal and transverse 
waves respectively. We may call coupled 
longitudinal waves as L1, L2, L3 waves 

respectively having phase velocities 𝑐1
2 , 𝑐2

2 , 𝑐3
2 . 

And let the couple shear waves be named them 
as S1, S2 waves respectively having phase 

velocities 𝑐4
2, 𝑐5

2. 

 
Attenuations 

 
Due to the involvement of Complex 

numbers in the coefficients in equations (12) 

and (14) , then the solutions will also be in 

complex valued.11  Therefore equations (15) and 

(16)  gives complex velocities, so that the 

corresponding propagations of elastic waves will 
be attenuated. Let us denote the attenuations by 

the symbol 𝑝. The attenuation coefficients of the 
longitudinal and transverse waves are given by12 

𝑝𝑖 =  
𝜔

𝐼𝑚(𝑐𝑖)
        (17) 

Where, 𝐼𝑚(𝑐𝑖) denote the imaginary part of 

complex value of  (𝑐𝑖), and 𝑖 =  1, 2, 3, 4, 5 . 
The first three attenuations corresponding to 
longitudinal waves and last two correspond to 
transverse wave. 
 

PARTICULAR CASES 

 
If we neglect fluid and gas constituents then the 
equation (4) will become classical field equation. 

Further, consider that the parameters 𝛼 , 𝛽  and 

𝐵𝑓𝑔  are tending to zero. Then the field equation 

(4) will be become classical field equation for 
poroelastic medium found by Tuncay and 

Corapcioglu. The coefficient 𝐵𝑓𝑔  is originated 

from the interactions of fluid and gas. And the 

coefficients 𝛼  and 𝛽  are coming from the 
macroscopic nature of viscous fluid. The 
existence of second shear wave is due to the 

presence of 𝛽  in the expression of 𝑡𝑖𝑗
𝑓

. S2 is 

vanished in the absence of 𝛽. 

 If we neglect 𝛼, 𝛽, and 𝐵𝑓𝑔 , the medium will 

become classical one, and the expression of 
phase velocity of longitudinal waves will remain 

same, except the new definition of 𝐸1 =
𝐴𝑓𝑓

⍴𝑓 . But 

the transverse S1 waves will be the only wave 

with the velocity (𝑐4
′ ) given by (see eq. 14)   

Lianngenga et al. 
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Figure 1. Variation of longitudinal wave velocities. 
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Figure 2. Variation of transverse wave velocities. 
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To illustrate the nature of phase velocities 
and its attenuation dependence on angular fre-
quency we shall use the above given values of 
parameters in to the equations (15-19), to com-
pute them numerically. And the dependence of 
phase velocities and its attenuations with respect 
to angular frequency has been depicted graphi-
cally. 

Figure 1 (A, B, C) showed variation of Phase 
velocities of longitudinal waves with respect to 
angular frequency. We see that the phase veloci-
ties are increases as increasing frequency. The 

first velocity ( ) of L1 wave is fastest and third 

velocity ( ) of L3 wave is slowest among the 
three longitudinal waves. 

 
The Figure 2 (A, B) show variation of Phase 

If we neglect fluid and gas constituents then the 
equation (4) will become classical field equation. 

Further, consider that the parameters 𝛼 , 𝛽  and 

𝐵𝑓𝑔  are tending to zero. Then the field equation 

(4) will be become classical field equation for 
poroelastic medium found by Tuncay and 

Corapcioglu. The coefficient 𝐵𝑓𝑔  is originated 

from the interactions of fluid and gas. And the 

coefficients 𝛼  and 𝛽  are coming from the 
macroscopic nature of viscous fluid. The 
existence of second shear wave is due to the 

presence of 𝛽  in the expression of 𝑡𝑖𝑗
𝑓

. S2 is 

vanished in the absence of 𝛽. 

 If we neglect 𝛼, 𝛽, and 𝐵𝑓𝑔 , the medium will 
become classical one, and the expression of 
phase velocity of longitudinal waves will remain 

same, except the new definition of 𝐸1 =
𝐴𝑓𝑓

⍴𝑓 . But 

the transverse S1 waves will be the only wave 

with the velocity (𝑐4
′ ) given by (see eq. 14)   

𝑐4
′2 = −

𝑏′

𝑑′
                                 (18) 

where, 𝑏′ = 𝑎1𝑏3𝑑3  ;  𝑑′ = −𝑎4𝑏3𝑑1 − 𝑎3𝑑3 𝑏1 +
𝑎2𝑏3𝑑3 

 ;   ;  ;  ; .And attenuation, say 𝑝4
′ , is given by 

𝑝4
′ =  

𝜔

𝐼𝑚(𝑐4)
                                                      (19) 

 

NUMERICAL RESULTS AND COMPUTATION 
 

In this section we shall try to know the 
nature of phase velocities of dilatational and 
shear waves with respect to angular frequency. 
We shall use the following appropriate values of 
Elastic parameters, swelling parameters, fluid 
and gas parameters as follows: 

𝜆 = 2.2238 × 1010  𝑁 𝑚−2;  𝜇
= 2.992 × 1010𝑁 𝑚−2; 

𝛼 = 1.002 × 10−3𝑁 𝑠𝑒𝑐 𝑚−2;  𝛽
= 8.88 × 104 𝑁 𝑠𝑒𝑐 𝑚−2; 

𝐴𝑓 = −1.3 × 106𝑁 𝑚−2; 𝐴𝑓𝑓

= −3.7 × 105𝑁 𝑚−2; 𝐴𝑓𝑔

= −2.45 × 105 𝑁 𝑚−2; 
𝐴𝑓 = −1.2 × 104𝑁 𝑚−2;  𝐴𝑔𝑔

= −1.7 × 105𝑁 𝑚−2; 
𝐵𝑓𝑓 = 4 × 106𝑁 𝑠𝑒𝑐 𝑚−4; 𝐵𝑓𝑔

=  5 𝑁 𝑠𝑒𝑐 𝑚−4;  𝐵𝑔𝑔

= 3: 3 × 104 𝑁 𝑠𝑒𝑐 𝑚−4; 
𝜌𝑠 = 5 × 105 𝐾𝑔 𝑚−3;  𝜌𝑓

= 6 × 104𝐾𝑔 𝑚−3; 𝜌𝑔

= 1 × 103𝐾𝑔 𝑚−3 

To illustrate the nature of phase velocities 
and its attenuation dependence on angular 
frequency we shall use the above given values of 
parameters in to the equations (15-19), to 
compute them numerically. And the 
dependence of phase velocities and its 
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Figure 4. Variation of attenuation of transverse waves. 
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If we neglect fluid and gas constituents then the 
equation (4) will become classical field equation. 

Further, consider that the parameters 𝛼 , 𝛽  and 

𝐵𝑓𝑔  are tending to zero. Then the field equation 

(4) will be become classical field equation for 
poroelastic medium found by Tuncay and 

Corapcioglu. The coefficient 𝐵𝑓𝑔  is originated 

from the interactions of fluid and gas. And the 

coefficients 𝛼  and 𝛽  are coming from the 
macroscopic nature of viscous fluid. The 
existence of second shear wave is due to the 

presence of 𝛽  in the expression of 𝑡𝑖𝑗
𝑓

. S2 is 

vanished in the absence of 𝛽. 

 If we neglect 𝛼, 𝛽, and 𝐵𝑓𝑔 , the medium will 
become classical one, and the expression of 
phase velocity of longitudinal waves will remain 

same, except the new definition of 𝐸1 =
𝐴𝑓𝑓

⍴𝑓 . But 

the transverse S1 waves will be the only wave 

with the velocity (𝑐4
′ ) given by (see eq. 14)   

𝑐4
′2 = −

𝑏′

𝑑′
                                 (18) 

where, 𝑏′ = 𝑎1𝑏3𝑑3  ;  𝑑′ = −𝑎4𝑏3𝑑1 − 𝑎3𝑑3 𝑏1 +
𝑎2𝑏3𝑑3 

 ;   ;  ;  ; .And attenuation, say 𝑝4
′ , is given by 

𝑝4
′ =  

𝜔

𝐼𝑚(𝑐4)
                                                      (19) 

 

NUMERICAL RESULTS AND COMPUTATION 
 

In this section we shall try to know the 
nature of phase velocities of dilatational and 
shear waves with respect to angular frequency. 
We shall use the following appropriate values of 
Elastic parameters, swelling parameters, fluid 
and gas parameters as follows: 

𝜆 = 2.2238 × 1010  𝑁 𝑚−2;  𝜇
= 2.992 × 1010𝑁 𝑚−2; 

𝛼 = 1.002 × 10−3𝑁 𝑠𝑒𝑐 𝑚−2;  𝛽
= 8.88 × 104 𝑁 𝑠𝑒𝑐 𝑚−2; 

𝐴𝑓 = −1.3 × 106𝑁 𝑚−2; 𝐴𝑓𝑓

= −3.7 × 105𝑁 𝑚−2; 𝐴𝑓𝑔

= −2.45 × 105 𝑁 𝑚−2; 
𝐴𝑓 = −1.2 × 104𝑁 𝑚−2;  𝐴𝑔𝑔

= −1.7 × 105𝑁 𝑚−2; 
𝐵𝑓𝑓 = 4 × 106𝑁 𝑠𝑒𝑐 𝑚−4; 𝐵𝑓𝑔

=  5 𝑁 𝑠𝑒𝑐 𝑚−4;  𝐵𝑔𝑔

= 3: 3 × 104 𝑁 𝑠𝑒𝑐 𝑚−4; 
𝜌𝑠 = 5 × 105 𝐾𝑔 𝑚−3;  𝜌𝑓

= 6 × 104𝐾𝑔 𝑚−3; 𝜌𝑔

= 1 × 103𝐾𝑔 𝑚−3 

To illustrate the nature of phase velocities 
and its attenuation dependence on angular 
frequency we shall use the above given values of 
parameters in to the equations (15-19), to 
compute them numerically. And the 
dependence of phase velocities and its 
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velocities of transverse waves with respect to 
angular frequency. We see that the phase veloci-
ties are increases as increasing frequency. The 

velocity ( ) of S1 wave is very slow as com-

pared to the velocity  of S2 wave. 
We knew that the five waves were attenuat-

ing in nature. The following Figures 3 (A, B, C) 
show the variation of attenuations of longitudi-
nal waves with respect to angular frequency. 
The values of attenuations are increases as in-
creasing angular frequency. 

And the following Figure 4 (A, B) show 
variations of transverse waves. In fig 4 (A), we 
see that the transverse wave (S1) is very slow 
and highly attenuated. And from fig 4 (B), we 
see that S2 waves has lower attenuation as com-
pare to S1 waves. 

 

CONCLUSION 
 

In homogeneous isotropic swelling porous 
materials (containing solid, liquid and gas) there 
are five waves – three coupled longitudinal and 
two coupled transverse waves propagating with 

phase speed , (i=1, 2, 3, 4, 5), they are all 
frequency dependent and dispersive. The propa-
gation of wave in this medium is attenuating in 
nature. The existence of S2 wave is due to the 
presence of coefficient of viscosity.  
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