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Introduction 

Article Research 

Population growth in Aizawl city has caused urban areas to expand into landslide-prone ar-

eas. These areas comprised of Bhuban Formation rocks of Surma Group and have geological 

features that frequently generate ground instabilities. The present study integrated with mor-

photectonic analysis, geotectonic characterization, role of litho-units including their sedimen-

tological aspects and analyses of precipitation time series reveals that the southern part of 

Aizawl city is tectonically active and lithologically vulnerable towards landslide disaster. 

Greater surface slope and similar bed attitude enhance the risk of failure. The massive sand-

stone overlies upon weak clay surfaces that are regularly lubricated by high down pour. Even 

moderate rainfall can trigger the landslides. The clay layers can mobilize the geological litho-

sequences as a combined result of the tropical humid climate and observed weak slope sta-

bility conditions. A catastrophic landslide had killed more than 80 people and many other 

sliding events have been recorded in adjacent areas. Therefore, this study presents tectonic 

and geologic conditions which can help to predict future slides.       
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Methodology 

Fig. 1 | Geological map of Mizoram showing the study area.  
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Fig.  2 | Mathematical derivations and procedure for 
calculating the parameters for each basin.  
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Fig.  3 | Contour patterns of the study area related with landslides.   

Fig.  4 | Regional tectonic settings of 
the in and around IBR, the box show-
ing the study area .   

Fig.  5 | Tilting of the basins indicated by arrows and the |AF| ranges 
for each basin.  
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Geological setting 

Results and Discussions 

Morphotectonic and lineament analysis 
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Sedimentological aspects of the region 

 

1 Ser Lui- near Aizawl  AF |AF| Bc Bs Tilting 

 5th  28.300 21.700 0.685 1.543 SW 

 4th part 1  31.798 18.202 0.621 2.481 S 

  3rd part 1 63.618 13.618 0.696 1.009 SE 

  3rd part 2 42.173 7.827 0.579 2.315 S  

 4thpart 2  37.193 12.807 0.646 1.466 W 

  3rd part 1 32.813 17.187 0.645 0.002 SW 

  3rd part 2 41.327 8.673 0.737 1.487 NW 

 4thpart 3  45.152 4.848 0.772 1.255 W 

  3rd part 1 51.890 1.890 0.641 2.035 NW 

  3rd part 2 41.208 8.792 0.560 2.808 EW 

  3rd   3 53.098 3.098 0.724 1.597 WE 

  3rd   4 70.847 20.847 0.494 0.003 SE 

2 TuikhawhibaLui       

 4th  67.690 17.690 0.787 0.947 SE 

  3rd part 1 62.709 12.709 0.658 1.960 EW 

  3rd part 2 49.342 0.658 0.687 1.895 SW 

        

3 SihpuiLui       

 3rd  50.448 0.448 0.686 1.438 S 

Table 1 | Morphometric parameters for the basins.  
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Fig.  6 | SL values plotted against river long profile, anomalous values are shown by red circles.  

Fig.  7 | Anomalous SL points are marked in lineament 
map, along with ancient and active landslides. Inset is 
the lineament trends shown by rose diagram. 

Fig.  8 | Litholog of Hlimen section. 
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Landslide study 

Time-series analysis of precipitation 
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Fig.  9 | Google Earth image showing the slide zone of Hlimen quarry. 

Fig.  10 | Geologic profile indicating surface slope conditions around Hlimen slide zone and southern Aizawl section.  
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Conclusions 

    Cumulative rainfall for 
the mean values in 
mm (1990-2007) 

Percentage of cumulative rainfall for the interval April to October (%) of 
every sliding events 

     1991-1992 1996-1997 1997-1998 2004-2005 

 Apr   165.79 229.81 127.87 162.86 306.35 

 May   413.33 245.32 132.82 184.36 165.70 

 Jun   366.44 183.93 147.91 140.81 143.68 

 Jul   379.41 151.03 284.92 323.66 287.87 

 Aug   375.26 172.68 131.11 132.44 148.67 

 Sep   322.70 189.65 292.84 185.00 224.45 

 Oct   159.91 274.53 161.34 100.06 195.23 

Mean total rainfall 
for Apr-Oct (mm) 

288.34 206.71 182.69 175.60 210.28 

% related to the 
mean total rainfall 

for Apr-Oct 
(288.34 mm) 

 67.20 105.86 90.14 108.64 

 

Table 2 | Cumulative and total rainfall for the rainiest period covering the months from April to October.   
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Fig.  11(a) | Cumulative rainfall for the rainiest period 
affecting Hlimen Landslide Event-1. 

Fig.  12 | Average rainfall for the rainiest period and no. of landslides in Aizawl during years 
associated with Hlimen landslide events Landslide events. 

Fig.  11(b) | Cumulative rainfall for the rainiest period 
affecting Hlimen Landslide Event-2. 

Fig.  11(c) | Cumulative rainfall for the rainiest period 
affecting Hlimen Landslide Event-3.  

Fig.  11(d) | Cumulative rainfall for the rainiest period 
affecting Hlimen Landslide Event-4.  
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