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In this paper, we study some curvature problems of Ricci solitons in a-Kenmotsu manifold. It
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is shown that a symmetric parallel second order-covariant tensor in a a-Kenmotsu manifold

is a constant multiple of the metric tensor. Using this result, it is shown that if (L,g + 25) is
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parallel where V'is a given vector field, then the structure (g, V, A) yield a Ricci soliton. Further,
by virtue of this result, Ricci solitons for n-dimentional a-Kenmotsu manifolds are obtained.
In the last section, we discuss Ricci soliton for 3-dimentional a-Kenmotsu manifolds.
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Introduction

A Ricci soliton are the natural generalization
of Einstein metric and are defined on a
Riemannian manifold. On the manifold M, a
Ricci soliton is a triple! (g,V,1) with a
Riemannian metric g, a vector field V and a real
scalar 1 such that

LyX,Y) +25X,Y) + 21 g(X,Y) =0, (1)
for any vector fields X,Y on y(M) where S is the
Ricci tensor and £, denotes the Lie derivative
operator along the vector field V. The metric
satisfying (1) are very interesting in the field of
physics and are often referred as quasi-
Einstein.?® The Ricci soliton is said to be
shrinking, steady and expanding according as 2
is negative, zero and positive respectively.*

Das® studied second order parallel tensor on
an almost contact metric manifold and found
that on an a-K-contact manifold (¢ being non-
zero real constant) a second order symmetric
parallel tensor is a constant multiple of the
associative positive definite Riemannian metric

tensor. It is also proved that in an a-Sasakian
manifold there is no non-zero parallel 2-form.
The study of Ricci solitons in K-contact
manifolds was started by Sharma® and in the
continuation of this Ghosh, Sharma and Cho’
studied gradient Ricci soliton of a non-Sasakian
(k,u) -contact manifold. Generally, in a P-
Sasakian manifold the structure vector field ¢ is
not killing, that is (£yg) # 0 but in K-contact
manifold ¢ is a killing vector field, that is (£, g) =
0. Recently, De? have studied Ricci soliton in P-
Sasakian, Barua and De’ have studied Ricci
soliton in Riemannian manifolds. Since then
several other studied Ricci soliton have been
published in various contact manifolds:
Eisenhart problem to Ricci soliton in f -
Kenmotsu manifold,'® Eta-Ricci solitons on para-
Kenmotsu manifolds,” on contact and
Lorentzian  manifolds,01212 on  Sasakian
manifold,"** ¢« -Sasakian manifold,’* on
Kenmotsu manifold," etc.

Motivated by above studies, in this paper we
treat Ricci soliton in a-Kenmotsu manifolds. The
paper is structured as follows. After
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introduction, section 2 is a brief review of a-
Kenmotsu manifold. Section 3, is devoted to the
study of parallel symmetric second order tensor
in a-Kenmotsu manifold and Ricci soliton in a-
Kenmotsu manifolds. In this section, we obtain a
relation between symmetric parallel second
order covariant tensor and metric tensor in a-
Kenmotsu manifold. In the second problem of
this section we studied the necessary and
sufficient condition of a Ricci semi-symmetric a-
Kenmotsu manifold and 75 -Einstein manifold.
Section 4 is devoted to study Ricci soliton in 3-
dimensional a-Kenmotsu manifold.

a-Kenmotsu manifold

An n-dimensional real C*-manifold M is said
to almost contact structure (g, ¢,7) if it admits a
(1, 1) tensor field ¢, a contravariant vector field ¢
and a 1-form n which satisfy

1) =1, 9*X = X +n(X)§, - (2)
which implies
@) =0, n(pX) =0, -(3)

for all vector field X,Y on y(M), where y(M) is the
Lie algebra of c¢* vector fields on M. An n-
dimensional real ¢*-manifold M equipped with
almost contact structure (¢, ¢,7n) is called almost
contact manifold!®.

An almost contact manifold M with metric
tensor g which satisfies the condition

9(@X,Y) = g(X,Y) = n(X)n(Y), --(4)
is called almost contact metric manifold M
(@.$m,9)-

An almost contact metric manifold M is said
to be almost a-Kenmotsu manifold if

dn =0, and d® =2an A,
where ¢ is a fundamental 2-form defined as
®(X,Y) = g(pX,Y) and a being a non-zero real
constant.” Moreover, if an almost a-Kenmotsu
manifold M satisfies the following relations

(Tx @)Y = —a{g(X, o¥)§ + n(V)pX}, ...(6)

and (7y§) = a{X —n(X)¢}, .(7)
then it is called a-Kenmotsu manifold.'81¢

On an a-Kenmotsu manifold M, the following
relations hold?0212?

RX, V)¢ = a*(n(X)Y —n(¥Y)X}, --(8)
RE XY = a?(n(V)X — g(X,Y)é}, -9
n(RX,Y)Z) = a*{g(X,Y)n(2) — g(v, Z)n(X)}, )

10

12

S(frf) = _az(n_l)r (12)
Q¢ = —a*(n— 1), ..(13)
(VxnY = a{g(X,Y) —nCOn(1)}, -.-(14)

for all vector fields X,Y,Z on y(M), where R is the
Riemannian curvature tensor, S is the Ricci
tensor of type (0, 2) and Q is the Ricci operator
defined as S(X,Y) = g(QX,Y).

Parallel symmetric second order tensors
and Ricci solitons in a-Kenmotsu
manifolds

Let h denote a (0, 2) type symmetric tensor

field which is parallel with respect to ¥ that is
Vh = 0. Then it follows that! 2

V2h(X,Y;Z, W) —V2h(X,Y;W,Z) =0, ...(15)
which gives
h(R(X,Y)Z,W) + h(Z,R(X,Y)W) = 0. ... (16)

Taking Z=Ww =¢in (16) and using (8), we
have

a*{nXhY, &) —n(hX, )} = 0. -(17)

Since a is non-zero, so by taking X = ¢ in (17)
and by the symmetry of h, we have

h(Y, &) = n(NAE 9. (18)

Differentiating (18) covariantly with respect
to X, we have

k) (¥, ) + h(VxY, §) + (Y, Vx$)
= (xm (A, +n(xYIR(E, §)

(V) (Vg h) (€, &) + 2n(Y)h(VxE, §). --(19)

By using (7), (14), (18) and the parallel
condition Vh = 0 in (19), we have

h(X,Y) = g(X,Y)h(£,©).

The above equation implies that h(¢,¢) is a
constant, via (18). So we have the following
theorem.

Theorem 1. A symmetric parallel second order
covariant tensor in an a-Kenmotsu manifold is a
constant multiple of the metric tensor.

Corollary 1. A locally Ricci symmetric (VS = 0)
a-Kenmatsu manifold is an Einstein manifold.

Remark 1. The following statements for a-
Kenmatsu manifold are equivalent

(i) Einstein,

(1i) locally Ricci symmetric,

(ii) Ricci semi-symmetric, thatisR-S = 0.

The implication (i) - (ii) — (iii) is trivial. Now
we prove that the implication (iii) - (i) in more
general frame work of ¢-Kenmotsu manifold.
Since R-S=0, means exactly (16) with h
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replaced by 5, that is
(RX,Y) U, V) = =S(RX,Y)U,V) —
S(U,R(X,)V). ..(21)

Taking R-S=0and puttingXx = ¢ in (21), we
have

S(R(E,Y)U,V) + S(U,R(E,Y)V) = 0. ..(22)

In view of (9) and a # 0, the above equation
becomes

n@SY,V) —g¥,VISE V) +n(V)SWU,Y) -

gy, v)s,& =0. ...(23)

Putting U = ¢ in (23) and by using (3), (11) and
(12), we obtain

S(Y,V) = —a?(n—1)g(Y, V).

This lead the following theorem.

Theorem 2. A Ricci semi-symmetric «a -
Kenmotsu manifold is an Einstein manifold.

Corollary 2. If on an a-Kenmotsu manifold the
tensor field (L, g + 25) is parallel, then (g,V, ) gives
a Ricci soliton.

Proof. A Ricci soliton in a -Kenmotsu
manifold is defined by (1). Thus (£,g + 25) is
parallel. By theorem (1) it is clear that if ana-
Kenmotsu manifold admits a symmetric parallel
(0, 2) tensor, then the tensor is a constant
multiple of the metric tensor. Hence (£, g + 25) is
a constant multiple of metric tensor g that is
Lyg +28)(X,Y) = g(X,Y)h(,&), where h(§,§) is a
non zero constant. It is the application of the
theorem (1) to Ricci soliton.

Theorem 3. If a metric g in an a-Kenmotsu
manifold is a Ricci soliton with V = & then it is n-
Einstein.

Proof. PuttingV = ¢ in (1), we have

(Leg)(X,Y) +25(X,Y) + 24 g(X,Y) =0, ..(24)
where (L;g)(X,Y) = g(Vx&,Y) + g(X, 7y ).
=2a{g(X,Y) —nCOn(¥)}. ...(25)

Substituting (25) in (24) and by use of (7), we
obtain

SX,Y) =—(a+DgX,Y) +anX)n().

Hence the result.

Theorem 4. A Ricci soliton (g,¢é,1) in an n-
dimentional a-Kenmotsu manifold can not be steady
but is shrinking.

Proof. In the Linear Algebra either the vector
field Vv € Spané orV L é&. However, the second
case seems to be complex to analyse in practice.
For this reason, we investigate for the case V =
g.

By a simple computation of (L, g+ 25), we
obtain

(Leg)X,Y) = 0. ...(26)

h(E,€) = —24, ..(27)

where h(¢,€) = (L¢g)(§,€) + 25(,&). ...(28)
Using (12) and (26) in above equation, we get
h(§,&) =2a%(n—1). ..(29)

Equating (27) and (29), we have
A=—a?’(n-1).

Since ¢ is some non-zero scalar function, we
have 2 #0, that is Ricci soliton in an n -
dimensional a -Kenmotsu manifold cannot be
steady but is shrinking because 1 < 0.

Theorem 5. If an n-dimensional a-Kenmotsu
manifold is n-Einstein then the Ricci solitons in a-
Kenmotsu manifold that is (g,§,1) where 1=
—a?(n — 1) with varying scalar curvature cannot be
steady but it is expending.

Proof. The proof consists of three parts.

(i We prove a-Kenmotsu manifold
Einstein,

(i) We prove the Ricci soliton in a-Kenmotsu
manifold is consisting of varying scalar
curvature,

(iii) We find that the Ricci soliton in a-
Kenmotsu manifold is expending.

First we prove that the ¢-Kenmotsu manifold
is n-Einstein: the metric g is called n-Einstein if
there exists two real function a and b such that
the Ricci tensor of g is given by the general
equation

SX,Y) =ag(X,Y) + bn(X)n(Y). ...(30)

Lete;, (i = 1,2,..n) be an orthonormal basis of
the tangent space at any point of the manifold.

ispy-

Then putting X=Y =¢; in (30) and taking
summation over i, we get
r=an+b. ..(31)

Again putting X =Y = ¢ in (30) then by use of
(12), we have

a+b=-a’(n-1).

Then from (31) and (32), we have

a=(a2+nrfl),b=—(na2+n%). ...(33)
Substituting the value of ¢ and b from (33) in

(30), we have
S(X,Y) = (az +nrj)g(X,Y) — (n a? +

) n(0n), ~(34)
the above equation shows that « -Kenmotsu
manifold is n-Einstein manifold.

Now, we have to show that the scalar
curvature r is not a constant and it is varying.

..(32)
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For an n-dimensional a-Kenmotsu manifolds the
symmetric parallel covariant tensor h(X,Y) of
type (0, 2) is given by

h(X,Y) = (Leg)(X,Y) +25(X, V).

By using (25) and (34) in (35), we have

hx,Y) = 2{ala + 1) + =} g(x,V) - 2 {a(na +

D+ nn). ...(36)
Differentiating (36) covariantly with respect
to Z and using (14), we have

(V,h)(X,Y) = 2 {(Za)(a +1) + a(Za) +

...(35)

Vzr
n—1
-2 {(Za)(na +1)+nalZa) +
A n(On(Y)
-2 {a(naf +1)+ anl} a{g(Z,X) —
n(Z)nX)
+9(Z,Y) = n(@n(1)}. -(37)
By substituting Z =¢ and X =Y € (Span)! in
(37) and by using Vh = 0, we have

}g(X,Y)

Ver = —(n— D)Ve{a(a + 1)} . ...(38)
On integrating (38), we have
r=—(-Dala+1)+c, ...(39)

where ¢ is some integral constant. Thus from
(39), we have r is a varying scalar curvature.
Finally, we have to check the nature of the
soliton that is Ricci soliton in a -Kenmotsu
manifold:
From (1), we have h(X,Y) —21g(X,Y) then
putting X =Y = &, we have

h(¢,&) = —2A. ...(40)
On putting X =Y = ¢ in (36), we have
h(¢,&) = —2(n— Da?. ...(41)

Equating (40) and (41), we have

A=n-1a?

This show that 2 > 0, v n > 1 and hence Ricci
soliton in an a-Kenmotsu manifold is expending.

Theorem 6. If a Ricci soliton (g,¢,1) where 1 =
2a? of 3 -dimensional a -Kenmotsu manifold with
varying scalar curvature cannot be steady but it is
expending.

Proof. The proof consists of three parts.

(i) We prove that the Riemannian curvature
tensor of 3-dimensional a-Kenmotsu
manifold is n-Einstein,

(i) We prove that the Ricci soliton in 3-
dimensional a-Kenmotsu manifold is
consisting of varying scalar curvature,

(iif) We prove that find that the Ricci soliton
in a 3-dimentional a-Kenmotsu manifold
is expending.

The Riemannian curvature tensor of 3-

14

dimensional a-Kenmotsu manifold is given by
RX,Y)Z =g(Y,2)QX —g(X,2)QY +S(Y,Z2)X —
S(X,2)Y —%{g(Y, DX —g(X,2)Y}.
...(42)
Putting Z = ¢ in (42) and by using (8) and (11),
we have
a* (Y —n(¥)X} =n(¥)QX —n(X)QY —
(2a? +3) )X —n(X)Y}. -+ (43)
Again putting Y = ¢ in (43) and by using (2), (3)
and (13), we get
ox = (a2 +5)x - (3% + L) n(x0)¢. ..(44)
By taking an inner product with Y in (44), we
have
SK,¥) = (a2 +3) g(x,v) = (302 + 2) n(X)n(¥).
...(45)
It shows that 3-dimensional a -Kenmotsu
manifold is n-Einstein manifold.
Now, we have to show that the scalar
curvature r is not a constant that is r is varying
We have

h(X,Y) = (Leg)(X,Y) + 25X, V).
By using (25) and (45) in (46), we have
h(x,v) = 2{ala + 1) + 1} gX, 1) - 2{a(3a +
1)+ g}n(x)n(y). ..(47)
Differentiating above equation with respect
to Z, we have
Vzr
TR = 2{@0 @+ D + alZa) + 2 g(x,v)
—2{(Za)(3a + 1) + a(3Za) +
S Con)

—2{a@Ba + 1) + 1@ () +
n) Wz ()} ...(48)
By substituting Z =¢ and X =Y € (Span)! in
(48) and by using Vh = 0, we have

...(46)

Ver = =2Ve{a(a + 1)} . ...(49)
On integrating (49), we have
r=—-2ala+1)+c, ...(50)

where ¢ is some integral constant. Thus from
(50), we have r is a varying scalar curvature.
Finally we have to check the nature of the
Ricci soliton (g,&,4) in 3-dimensional « -
Kenmotsu manifold.
From (1), we have h(X,Y) - 21g(X,Y) then
putting X =Y = ¢, we have

h(¢,&) = —24. ...(51)
On putting X =Y = ¢ in (47), we have
h(§,§) = —4a’. ...(52)

Equating (51) and (52), we have
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Equating (51) and (52), we have
A=2a?

This show that 1> 0 and hence Ricci soliton in
an a-Kenmotsu manifold is expending.
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