In this paper, we study some curvature problems of Ricci solitons in α-Kenmotsu manifold. It is shown that a symmetric parallel second order-covariant tensor in a α-Kenmotsu manifold is a constant multiple of the metric tensor. Using this result, it is shown that if (Lvg + 2S) is parallel where V is a given vector field, then the structure (g, V, λ) yield a Ricci soliton. Further, by virtue of this result, Ricci solitons for n-dimentional α-Kenmotsu manifolds are obtained. In the last section, we discuss Ricci soliton for 3-dimentional α-Kenmotsu manifolds.